一、气凝胶概述  

气凝胶是一种固体相和孔隙结构均为纳米量级的无机非晶体多孔材料。它具有连续无规则的开放纳米网络结构,密度低,孔隙率高达 80%~99.8%,是世界上最轻的固体材料。
气凝胶独特的多孔纳米结构使得它在宏观上表现出纳米材料特有的界面效应和小尺寸效应,同时具有低折射率、低介电常数、低传声速度、低传热系数等优异的性质。气凝胶材料以其优异的结构性能在隔热隔声材料、催化剂及催化剂载体材料、废气吸附材料、光学材料等等诸多其他领域都有着非常广泛的应用。
二、气凝胶的制备

气凝胶的制备过程主要分为三个步骤:溶胶-凝胶过程、凝胶老化过程和干燥过程。凝胶过程示意图见图 1。

气凝胶制备的关键:超临界干燥- 行业动态- 适安佳(北京)生物科技有限公司_临界点干燥,超临界二氧化碳干燥,超临界萃取
图1硅气凝胶制备过程示意

 

首先,前体溶液在催化剂的作用下形成胶体粒子分散在溶剂中,即所谓溶胶。溶胶中的胶体粒子经聚集缩合的凝胶过程形成无序交联的具有空间三维网络结构的湿凝胶;由于刚形成的湿凝胶,其三维结构强度不足,很容易破碎断裂,因此需要在母体溶液中老化一段时间。
老化过程中,凝胶内部和表面尚未反应的官能团会进一步缩合,使得所制备的凝胶的强度提高;老化后的凝胶,再通过特定的干燥过程,保证其结构不被破坏的条件下,去除其纳米量级孔结构中的大量溶剂,得到高孔隙率、低密度的多孔固体材料--气凝胶。
三、气凝胶干燥过程的重要性
 
干燥过程在气凝胶的制备过程中非常重要。由于在湿凝胶干燥成为气凝胶的过程中,凝胶结构要承受巨大的干燥应力,高达 100MPa-200MPa,这种应力会使凝胶结构持续的收缩和开裂,最终导致结构塌陷。干燥应力主要来自于毛细应力、渗透压力、分离压力等。其中占据最为主要地位的要属毛细压力。
 
湿凝胶干燥过程中,溶剂的挥发,造成孔道中,固液相界面向高能的固气相界面转变,形成弯月面,毛细压力产生,其大小符合拉普拉斯方程:式中,γ为孔道中溶剂的表面张力,θ为孔道内颗粒对溶剂的接触角,r 为孔道半径。
在凝胶孔结构中,由于孔道半径为纳米量级,因此其承受的毛细压力非常大。又由于凝胶结构中孔径大小并不均一,不同孔道承受的毛细压力不同;此外,溶剂挥发造成的毛细压力从凝胶表面到凝胶内部存在较大梯度,这些因素都导致凝胶结构受力不均,最终造成凝胶结构的塌陷。
干燥过程中,在干燥应力的作用下,凝胶结构会出现较大的收缩甚至开裂, 从而无法得到结构理想的气凝胶材料。
影响干燥应力的主要因素包括:
凝胶结构的强度、凝胶的孔径大小与均一度、凝胶内溶剂的表面张力、溶剂与凝胶结构表面的接触角等等。
通过调节这些因素从而有效控制干燥应力对凝胶结构的破坏程度,是各种气凝胶干燥方法中最至关重要的步骤。
四、超临界干燥的分类
 

超临界干燥方法,是指在高于临界温度和压力的条件下,凝胶中的溶剂被替换成特定的超临界流体,再通过先降压再降温的方式将凝胶孔径中的超临界流体转化为气体,得到干燥后的气凝胶。这种方法用液-超临界相变和超临界-气相变替换了常规方法中的液-气相变,有效避免了在液-气相变中产生的干燥应力。

目前常用的超临界干燥方法分为两种:
(1)高温超临界干燥:
高温超临界干燥是最早的硅气凝胶干燥方法。1931 年,Kistler,首次制备出硅气凝胶就是采用的这种方法。在高温超临界干燥中,通常采用甲醇等有机溶剂作为超临界流体。这使得在超临界条件下,较高的温度导致硅凝胶结构表面为反应性的-OH 基团与有机溶剂(如甲醇)发生二次酯化反应,亲水性的-OH 被取代为疏水性的烷基基团。
 
这种方法干燥得到的气凝胶在空气中不会因吸收水分而导致结构开裂,其稳定性更强。但是,高温超临界干燥也有其弊端,在高温高压条件下,易燃的有机溶剂作为超临界流体,使得实验的危险系数增加。因此,科研人员试图找到更好的干燥方法, 低温超临界干燥法应运而生。
(2)低温超临界干燥:
1985 年,TewariP首次采用二氧化碳作为超临界流体,通过低温超临界干燥制备出了硅气凝胶。从此,临界温度接近室温的二氧化碳成为了低温超临界干燥中最常采用的最佳流体,其较低的临界温度(31℃)和临界压力(7.39MPa)以及二氧化碳的无毒和不易燃等特性使得低温超临界干燥技术更加安全。
但是,由于二氧化碳与水的相容性较差,需要先对湿凝胶进行水-乙醇溶剂置换,再由二氧化碳置换凝胶中的乙醇,经过干燥得到气凝胶。用二氧化碳低温超临界干燥方法得到的硅气凝胶不具有疏水性,得到的气凝胶表面具有亲水性-OH基团。
1995 年,Ehrburger-DolleP等人对两种超临界干燥技术得到的硅气凝胶结构进行了对比和分析,结果发现,在二氧化碳中低温超临界干燥得到的硅气凝胶与在甲醇中高温超临界干燥得到的硅气凝胶相比,其结构中的微孔率更高。这可能是由于甲醇的临界温度和压力较高,加快了凝胶的老化,使得凝胶结构变粗,孔隙率降低。
五、结论
使用大量的有机溶剂和改性剂,以及耗时的加工步骤,进行凝胶的常用干燥所获得的材料,其某些参数可以符合气凝胶的要求,但是,总是不可能获得与超临界干燥所获得的气凝胶相同性能的材料。严格地讲,只有用超临界干燥法制备的材料,才是真正意义上的气凝胶(aerogel),而常压干燥或冷冻干燥法制备的材料只能算“类气凝胶(aerogel-like)”材料。
 
超临界干燥技术现在和将来都是气凝胶制备的主流干燥方法。随在超临界二氧化碳干燥工艺和设备的进步,这一清净和节能的特种干燥技术,将在大规模的气凝胶生产过程中得到越来越多的应用。

 

资料来源:清华大化工系化学工程国家重点实验室,北京,100084王涛,黄佳
https://www.shianjia.com//chaolinjieliutiyingyong/279

作者 x